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Abstract—Infrastructure cloud computing allows its clients The Chameleon testbed [6], [7] provides highly con g-
to allocate on-demand resources, typically consisting of a repre-  yrable access to large-scale resources. The hardware consists
sentation of a compute node. In general however, there is a need of an investment in 15,000+ cores of homogeneous resources

for allocating resources other than nodes and managing them .
in more controlled ways than simply on demand. This paper (Intell Haswell nodes) to support large scale experimenta-

generalizes the familiar “compute power on demand” pattern  tion, along with smaller investment in diversity including
by introducing the abstraction of an allocatable resource, GPUSs, FPGAs, storage-rich deployments, as weall as a range

describing its properties, and implementation for different  of different architectures. These resources are spread over
typeslof resources. We further describe archlltecture for a two sites, University of Chicago and TACC, connected with
generic allocatable resource management service that can be 100G network. Users allocate them individually or in large
extended to manage diverse types of resources as well as the ’
implementation of this architecture in the OpenStack Blazar ~and complex ensembles and can recon gure them at bare
service to manage resources ranging from bare-metal compute metal level, boot from custom kernel if needed, or get access
nodes to network segments. Finally, we provide a usage analysis to serial console. By basing its infrastructure largely on
of this service on the Chameleon testbed and use it to illustrate OpenStack [8], a commodity open source Infrastructure-
the effectiveness of resource management methods as well as L .
the need for incentives in usage arbitration. as—g-Serwce implementation, Chameleon demonstrated that
mainstream cloud technology can be used for support-
Keywordscloud computing, advanced reservation, allocat- ing Computer Science systems experimentation. At the
able resources, OpenStack Blazar same time, Chameleon extended the concepts underlying
infrastructure clouds by systematizing the concept of an
|. INTRODUCTION allocatable resource, extending it beyond handling node
reservations to encompass other resources, and emphasized
Over the last decade or so, infrastructure Cloud computgeneralized time management of cloud resources in support
ing [1] revolutionized how we think of resource procurementof interactive and co-scheduled resource use, critical in
by making available remote resources via isolated containefsxperimentation.
for dynamic exclusive usage. Roughly the same time period In this paper, we introduce the concept of @locatable
has seen the emergence of scalable (i.e., serving largesourceas entity de ning isolation and thus potential for
user communities) experimental systems like Grid'5000 [2],exclusive usage on cloud resources; we discuss its properties
GENI [3], Emulab [4], and FutureGrid [5]. These systemsand implementation for different types of resources. We then
implemented the concept of a scalable production testbediescribe an architecture for a generic allocatable resources
i.e., production services that provide and manage many tenthanagement service, as well as its implementation as the
porary “breakable environments”, composed of distributedOpenStack Blazar [9] service (originally called Climate,
compute nodes, networks, and storage units, used for irsince its inception in 2013 until mid-2014) which has
dividual experimentation. In today's cloud parlance, thesebeen accepted as a top level OpenStack component since
systems developed the concept of a “testbed as a servicethe fall of 2017. Blazar's implementation is adaptable to
while individual isolated testbeds are con gured for experi-the management of diverse resources so that the service
mentation that may get out of hand, the services that yield¢an be used in con gurable setting both in conjunction
them are expected to be production quality. These testbedsith other OpenStack components (such as Nova [10] and
emphasized the need for interactive experimentation, as welleutron [11]), and on its own by developing independent
as co-scheduling of multiple resources of different kind, andplugins for resources managed by services outside of Open-
thus time controlled access to isolated resources. Stack. Finally, we analyze our experiences with allocatable



resources on Chameleon demonstrating the value of advanead thus systems that require it (e.g., platforms supporting
reservations where resources are supply-constrained as wé€lbmputer Science experimentation) often resort to de n-
as the importance of incentives for their management. ing allocatable resources at coarse grain to avoid sharing.
This paper is organized as follows. In Section 2 weFor example, to provide performance isolation Chameleon
introduce the concept of allocatable resource and discuss itte nes compute allocatable resources as physical nodes,
properties. In Section 3 we describe the architecture for aather than parts of a node (which would provide ner-grain
generic allocatable resources management service followegharing but is hard to implement). The implementation of
by a discussion of implementation of the Blazar OpenStacksolation is typically associated with a certain cost/overhead.
service in Section 4. In Section 5 we provide insights gained-or example, hypervisor hosting VMs will require resources
from allocatable resource usage on Chameleon. We descrilte implement its function, or bare metal nodes have to be
related work in Section 6 and conclude. restored to default state between users which imposes an
overhead on the length of a lease. Allocatable resource is
thus whatever remains after the overhead has been con-
We de ne anallocatable resourcas a well-de ned object sumed.
within a system that the system's clients can automatically Time-bounded, metered, automatic allocation: Re-
allocate for exclusive, metered usage, delimited by well-sources are allocatable if their availability can be bounded by
de ned time events. We will call the temporary exclusive well-de ned time events. The most general implementation
ownership of such resources a lease. Leases can be atonait this functionality allows clients to select specic time
(associated with one resource only) or complex (associateelvents between which their lease will take place; this is
with multiple resources). often referred to as advance reservations [17]. We note
We discuss below the properties of allocatable resourceshat on-demandavailability is a special case of advance
Well-de ned: It is essential that the description of an reservations where the start time defaults to the time at which
allocatable resource can distinguish between any resourcéise request is made. Resources are available only on an on-
that can be considered different within the system. For exavailability basis [18], e.g., at a time that cannot be reliably
ample, if a cloud instance maps to multiple architectures, théounded or constrained by the client, are not allocatable by
instance itself is an allocatable resource but its deploymerd client (though they may be allocatable by the provider
on a particular architecture is not. The allocatable resourcas is the case in e.g., batch systems). The clients should
description is different than descriptions that a client mayalso be able to change the placement of those events in
input while interacting with the system which could be time throughout the lifetime of a lease, whether inactive
expressed in terms of constraint such as “node with memorgr active (i.e., without or with allocated resources). The
of at least 2GB per core”; in this case, generality simplyusage thus described should be monitored, metered, and
facilitates interactions, ultimately resolving the generic de-potentially limited according to those measures; the most
scription to a speci c allocatable resource mapping. This iscommon example of this is the speci ¢ dollar amounts that
particularly important in systems supporting experimentatiorusers pay under different cost models in commercial clouds,
where claims are made in the context of a well-de nedbut also applies to allocations and policy constraints on
model. usage in clouds operated within non-monetary economies
Exclusive usage:This property implies the ability to such as academic clouds. Allocations that do not conform to
de ne a unit of isolation between users. Historically, roughly policy/metering requirements (such as a credit or allocation
two de nitions of this isolation were considered useful: limit) should not be admitted into the system. Finally, the
system isolation, which presents to the user an independenéquirement for automatic allocation is essential to ensure
system, and performance isolation which ensures that ththat a system managing allocatable resources will scale.
allocatable resources present consistent performance. One ofA desirable characteristic of a system managing allocat-
the most enabling examples of system isolation are virtuahble resources is to provide an availability calendar: it allows
machines (VMs) [12] which emulate an individual computerusers to assess the availability of a resource at any given
system. Containers [13-15], similarly provide system isolatime, though only an actual lease request can provide the
tion though of a lesser degree (e.g., unlike VMs containersransactional guarantee of a resource availability. Still, unless
may share a kernel). The GENI project de ned the concepthe transactional volume in a system is very high for a
of a slice [16] which encompasses a set of connected L&pecic type of resource, the availability calendar can be
circuits and the compute resources connected to them arah effective additional tool in resource management.
thus de nes an isolated networking environment. System Of the properties described above, the isolation units are
isolation does not necessarily provide performance isolatiortypically set by a system designer who selects implemen-
i.e. assurance that a system will be associated with a wethtion suitable to the system's objectives. Providing well-
de ned quantum of resource such as guaranteed bandwidtlle ned descriptions of those isolation units and managing
This is generally hard to provide in shared environmentsthem in a way that satis es the remaining conditions is the
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Resources in the inventory are stored in the resourcenanager may automatically try to x the lease (both active
database as individual records. A resource record consists ahd pending) by nding another resource that matches the
its unique ID, its type, and then a set of key/value metadatariginal constraint stored in the database, by disassociating
pairs that describe the resource in more detail, e.g. a nodée resource from the lease. If no replacement resources are
might store its rack position and CPU architecture, while afound, the lease remains in the degraded state.

VLAN might store its 802.1Q tag. Leases are stored in the The lifecycle events associated with a lease set up during
lease database as a lease record, with a unique ID, start tinease creation are periodically checked and triggered at
and end time, and one or more reservation records consistirgppropriate times. Most of the events delegate to resource
of a resource type and the set of constraints speci ed by thelugins described in the next section to implement resource-
user for that resource type. It is important to persist thespeci c functions. For example, once the reservation is ready
original constraints so that additional resources satisfyingo start, an event is triggered that causes the manager to
them may be substituted later, or so that the user may adjustll the internalon_start  operation implemented by the
the constraints later. Separating the concept of a lease amshactment plug-in; as a result of this action the reservation
a resource reservation provides the exibility for one leasestatus changes from pending to active.

to cover multiple types of resources at the same time, e.g. a
user can reserve both a set of nodes and a public IP addreSs
by simply associating resource records with a given lease's The Lease Manager handles only functionality related to
reservation record. In addition to the lease and reservatiomanaging resource reservations and assumes that enactment,
records, a set of lease lifecycle event records representinige., a method for allowing reservation owners to access their
each phase of enactment (lease start, before lease end, leagserved resources while their reservation is active, is imple-
end) are stored for each lease. mented by resource-speci ¢ enactment services. The main

The resource assignment on lease creation may be earbssumption we make about those services is that they can
(nal mapping to specic resources created at the timeseparate reservable resources from a pool of (potentially) on-
of reservation) or late ( nal mapping to speci ¢ resources demand resources, making them usable only when obtained
created by the time the lease becomes active); the formahrough the Lease Manager. For example, when including
leads to a simpler implementation, the latter provides moreoating IPs as an allocatable resource via our system, the
exibility and dynamicity in optimizing assignments for operators must ensure that reservable oating IPs are not
various queries and adapting to resource changes. In eith@rcluded in their subnet's allocation pools, which prevents
case at creation time the database query should return them from being allocated to users directly via Neutron — but
non-empty list of possible options satisfying the constraintdhen the Lease Manager, using privileged service credentials,
or the lease will not be accepted; it is thus important thatcan call out to Neutron to allocate oating IPs into a speci ¢
the resource database supports efcient querying over aproject (in this case the project owning the reservation) and
arbitrary set of key/value pairs (resource metadata). remove them from the project when requested (i.e. when the

Unless an iterative negotiation style interaction with thereservation ends).
client [17] is desired and supported, a selection function is Enactment plugins allow the resource manager to support
then applied to pick a specic option. Depending on theleases for different types of cloud resources, managed by dif-
timing of resource assignment this function may optimizeferent services (e.g., compute resources managed by Open-
constraint management across leases or optimize administr&tack Nova [10] and network resources by Neutron [11]).
tive processes. For example, in our original implementationTo interface with these services, each resource type requires
the selection function would pick the rst item off the list; resource-speci ¢ enactment plugins, ensuring separation of
this led to signi cant churn on nodes that the resource quergconcerns.
returned rst and thus uneven hardware wear; we subse- The create, update, and delete inventory management
guently modi ed the selection function to pick a random operations as shown in Figure 1 contain an almost direct
resource which resulted in more uniform assignments acrogsass through to their plugin implementation. They contain
resources. In general, the selection function can be used ®&ither custom-made tools for generating resource meta-data
optimize other qualities like power usage. Once a uniquer interface with a service that holds that information (e.g.,
resource is identi ed, records are persisted in the databasé might fetch compute host information from OpenStack
and a resource reservation ID is returned. Nova or services con guring it for Nova). Especially when

Lease management may involve management for eitheadapting resource management services that were not orig-
adaptation or optimization. For example, the system maynally implemented to work with reservation systems, this
dynamically monitor resource inventory for its health status.part of the plugin may also implement a method separating
Unhealthy resources are marked as such, and any leases theservable resources from the main pool of on-demand
contain that resource (active or pending) enter a special “deresources (managed by a service like Nova), making them
graded” state. Based on policies and con guration, the leasasable only when reserved. In an OpenStack installation this

Resource plugins



would result in dividing the pool of nodes into reservable (via OpenStack Nova, the compute instance provisioning

nodes and nodes available via on-demand only as before.service), VLAN 802.1Q tag reservation, and public IP reser-
While creating and updating leases is handled entirely as gation (via OpenStack Neutron, the network provisioning

generic reservation, the allocatable resource manager plugisgrvice).

implement functions dealing with allocating and deallocating

actual resources to a lease. Those operations are as follows:

A. Blazar: Allocatable Resource Manager

on_start(resource reservation_id)

before _end(resourcereservation id)
on_end(resourcereservation id)
update_reservation(resourcereservation_id; values)

The Blazar system consists of two components: an API
component, which provides the lease interfaces over an
authenticated HTTP/JSON interface, and a manager com-
ponent, which provides lease, reservation, and resource

Theon_start andon_end functions are called respec- lifecycle management, as well as the delegation to various
tively when a reservation (lease of a speci ¢ resource) startsesource plugins for enactment. The APl and manager
and ends and handle resource allocation and deallocatiosomponents communicate over an RPC interface, where an
In addition,on_end is also called when a lease is deleted, AMQP bus serves as the transport layer. Authentication to
to trigger the end of an active reservation or perform rethe HTTP/JSON interfaces is performed via OpenStack's
quired cleanup for pending reservations. Tefore_end Keystone [20] authentication service. The interfaces are ex-
function can trigger an action at a con gurable time beforeposed to end-users over the Internet on a TLS-encrypted con-
the end of a reservation. For example, it can be used t@ection, which is terminated by a proxy running HAProxy.

snapshot instances running on compute hosts before they The manager component handles user requests and trans-

are terminated at the end of their reservations. lates them into actions against the backing resource and
While updating a pending reservation can be handleqeservation databases. Blazar does not lazy-assign resources:

entirely via generic service logistics implementation, once 8vhen a user creates a lease, speci ¢ resources are selected

reservation becomes active (i.e., is associated with allocateg q assigned to the lease, making them unreservable by other
resources) updating a reservation may trigger a call 1Q,sers for that time period.

?noﬂléjgclgr:pl?tzti_orgssrt\(l) agﬁnexistinfu?:stfrr\]/aﬁg). adding We use the SQLAIchemy library [21] to create a thin
P 9 ' object-relational mapping (ORM) layer that the manager
IV. | MPLEMENTATION uses to interact with database entities. Each resource type

In the context of the Chameleon project we de ned threehas three database tables associated with itesaurces
types of allocatable resources: heterogeneous bare met&ple, which stores the resource recordgservationgable,
machines, isolated network segments (VLANSs) and publicvhich stores a set of constraints specic to a reservation
IP addresses on the Chameleon testbed [6]. The compuf@r the resource and any parameters needed for enactment
nodes are well-described by the Chameleon Resource Di§f the reservation, and aallocations table, which stores
covery [19], down to serial numbers of individual compo- @ssociations between the rst two tables once resources are
nents. We chose to provide bare metal nodes as allocatabfdlocated to a reservation. An optional fourth table called
resources in order to provide both system and performanc@Xtra capabilitiescan be used to store arbitrary key/value
isolation; the sole ownership of the node ensures that useRirs that further describe a resource. Users can leverage
can run performance tests without interference by othergheseextra capabilities combined with some attributes stan-

In contrast, the isolation property for network allocatabledard to the resource (and stored in the resources table), to
resources (VLANS) provides only system isolation; this is |ter the resource inventory via their reservation constraints.
because we do not currently have a reliable implemenEor the lease management, we have three talitzses
tation ensuring performance isolation for networks. Thewhich stores the lease recorésentswhich stores the lease
IP addresses are allocated from a pre-assigned pool. F§fecycle event records, aneservationswhich serves as a

all allocatable resources, Chameleon provides a resourd@eneral table for all reservations across all resource types. A
calendar that facilitates planning. record in a resource's reservations table is associated with

While the implementation of individual allocatable re- & record in the general reservations table. This separation
sources varies, the ability to allocate, meter, and enforcé necessary due to a speci ¢ enactment plugin sometimes
usage is implemented via the same service. The Leageeeding additional parameters stored at lease creation time,
Manager is based on a separate OpenStack service call@ed- Which network to assign a public IP from.

Blazar [9], to which we are actively contributing. We addi- The manager queries the events table every few seconds
tionally integrated or implemented separate resource pluginand triggers any unexecuted events whose time has come
for each use-case we required: bare metal node reservatiaia plugins described below.




B. Nova/lronic Plugin: Nodes as Resources the public Internet. Metering public IPs is important as, in

The Nova plugin implements reservation of bare metaPUr ex_perience, users would often_alloc_:ate more public IPs
nodes. In OpenStack, bare metal provisioning is a combinelP their account than needed, or likewise forget to release
effort between the Nova and Ironic [22] systems. When arfh®m when nished. Over time, this can deplete the pool
operator adds a bare metal node to the inventory, the operat8f available IP addresses. To utilize this plugin, an operator
does so by specifying an Ironic node UUID. The plugin adds IP addresses to the resource inventory by specifying
retrieves specs such as how many CPUs are on the nod@eir IPv4 adgress an_d Neutron network UUID. Normally,
from Nova. These attributes are then mirrored in the resourcBleutron provides an interface that allows users to request
database. Operators can add additional metadata to the nod IP on a given network out Of. an allocation pool in an
e.g. rack placement or CPU vendor information, which ison-demand fashion. To properly implement IPv4 addresses
stored in theextra capabilitiestable for this resource type. @S an allocatable resource, this interface must be disabled,

At lease start, the plugin moves the reserved nodes t¥hich can effectively be accomplished by con guring the
a special Nova host group. Users must present a valid'eutron network to have an empty on-demand IP allocation
reservation ID to Nova when launching an instance, an@©ol. _ ) o
Nova schedules their instance on one of the nodes in this PUring lease creation, the IP resource plugin will instruct
host group. Before the lease ends, the plugin will send &leutron to allocate a new Floating IP on the network. The
noti cation email to the email address tied to the user'sFloating IP is then associated with the user's account, and
OpenStack account. This is important because when a lea¥dll appear in their dashboard for use. When the lease ends,
ends, the plugin will instruct Nova to terminate all running the Floating IP is deleted after ensuring it is no longer
instances on the bare metal nodes, and users may want gssigned to any running instance. It is not cu.rrently p053|_ble
ensure their data is moved off the node beforehand. ThE Prevent a user from deleting this Floating IP, but in
plugin cleans up the host group after instance terminationthiS event, the resource plugin simply does not attempt to
Any BIOS or rmware settings are reset as part of instancede|et? the IP at lease termination. This enactment plugin was
termination; this is performed by Ironic. contributed by NTT.

C. Neutron P|ugin: VLANS as Resources V. ANALYSIS OF LEASE USAGE ONCHAMELEON

One of the networking enactment plugins Chameleon uses To understand how users were using leases we analyzed
is the network segment plugin, which allows users to reservéhe usage data from the Chameleon testbed between 2015-
a VLAN 801.2Q tag. The Chameleon testbed infrastructurd7-17 and 2019-04-11. The usage is broken down over all
resides on host institution networks both at TACC and atypes of node resources on the Chameleon testbed described
the University of Chicago, and initially relied upon switches in detail at [24]. We gradually added resources to the
provided by the host institution. For this reason, only aChameleon testbed (e.g., the Skylake nodes were added
limited number of 801.2Q tags were provided to Chameleonslightly more than a year ago) so for each resource the
and demand for isolated networks could exceed capacity€levant usage is shown from the time it was added. We
Additionally, network slices are built by Chameleon usersalso removed all maintenance leases as well as all operations
using specialstitchable VLANsextending to the nearest leases from the pool to focus exclusively on user behav-
stitchport [23], and they are few in number (e.g., only 10 ardor. The usage data was collected from OpenStack Blazar
available at the University of Chicago site). To utilize the (reservation service) and Nova (compute service) databases,
plugin, an operator adds networks to the resource inventorgnd all the DevOps data (data belongs to the internal
by specifying their 801.2Q tag. Additionally, operators con-development and maintenance projects) was excluded.

gure Neutron to no longer allow users to create networks We rst asked to what extent Chameleon users took
with a specic 801.2Q tag, as only the resource pluginadvantage of the fact that testbed resources are allocatable

should be allowed to perform this action. rather than merely using resources that happened to be
During lease creation, the VLAN resource plugin will available when the user started the experiment. To assess
instruct Neutron to create a new OpenStack network with 4hat we counted the number of advance reservations used
given 801.2Q tag. The network is associated with the userfor each type of allocatable node resources on Chameleon
account, and will appear in their dashboard for use, thouglireservations for oating IP addresses and VLANs were
they wont be able to modify it. When the lease ends, thdntroduced very recently and have not yet generated reliable
network is simply deleted, making sure to rst unhook the usage information). We considered the lead time with which

network from any running instances. each reservation was made and mapped them into four
) categories: (1) on-demand, (2) up to a day in advance
D. Neutron Plugin: IPs as Resources (reservations with short lead time), (3) up to a week in

The second networking enactment plugins is responsibladvance, and (4) more than a week in advance (reservations
for managing the IPv4 addresses allocated to Chameleon awith long lead time). The results are shown in Figure 2
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